Mathematical Economics

Course ID: 
Year of Study: 
For Erasmus Students: 

Learning Outcomes

By the end of this course the student will be able to:

  • Use efficiently the basic mathematical methods used in economic analysis and modeling.
  • Model and analyze the most common research problems of economics and their dual i.e.: maximization of the utility function of the consumer and firm’s profits.
  • Model the effect of time on the research problems in economics.
  • Understand the connection between mathematical modeling and econometric modeling.

Course Contents

 (A) Introduction: Minima / maxima of functions, total differentials, quadratic forms, the Hessian matrix, the envelope theorem, comparative static analysis.

(B1) Classical programming: optimization subject to equality constraints. The Lagrange method: economic interpretation and comparative static analysis. Applications in economics: utility maximization, expenditure minimization, cost minimization.

(B2) Nonlinear programming: optimization subject to inequality constraints. Kuhn-Tucker (K-T) conditions. The K-T conditions as necessary and sufficient conditions. Applications in Economics: “corner” solutions in the utility maximization problem, generalized conditions for cost minimization and profit maximization.

(C) Dynamic Programming: differential equations, difference equations, the Phase-Diagram technique. Local stability analysis. Introduction to Dynamic Programming.

Teaching Activities

Lectures (3 hours per week)

Teaching Organization


Semester workload

Lectures, 3 hours per week

(3x13) 39 hours

Study at home

111 hours

Total number of hours for the Course (25 hours of work-load per ECTS credit)

150 hours (total student work-load)


Written examination at the end of the semester (100%)

Use of ICT

Use of ICTs in teaching (PowerPoint) and communication with students (e-class).

Course Info

Current Tutors


Chatzistamoulou Nikolaos

Teaching Fellow
Chatzistamoulou N.
Field of Expertise: 
Applied Microeconometrics
Office Hours: 
Wednesday 10.00-11.00 and 18.00-20.00 (as well as upon appointment)

Reading List

Reading Recommendations: 
Chiang A.C., Wainwright K. (2009). Mathematical Methods of Economic Analysis. 2nd Edition. Kritiki Publications. Athens. (Chiang A.C., Wainwright K. (2009). Μαθηματικές Μέθοδοι Οικονομικής Ανάλυσης. 2η Έκδοση. Εκδόσεις Κριτική. Αθήνα.)
Hoy M., Livernois J., McKenna C., Stengos T., Κυρίτσης Ι. (επιμ.). (2012). Μαθηματικά Οικονομικών Επιστημών. 1η Έκδοση. Γ. Δαρδάνος και ΣΙΑ. Αθήνα.
Ξεπαπαδέας Α.Π., Γιαννίκος Ι.Χ. (2009). Μαθηματικές Μέθοδοι στα Οικονομικά. 1η Έκδοση. Γ. Δαρδάνος – Κ. Δαρδάνος ΟΕ. Αθήνα.)
Τσουλφίδης Λ. (1999). Μαθηματικά Οικονομικής Ανάλυσης. 2η Έκδοση. Γ. Δαρδάνος – Κ. Δαρδάνος ΟΕ. Αθήνα.)